Coupling and perturbation techniques for categorical time series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Granger Causality Networks for Categorical Time Series

We present two model-based methods for learning Granger causality networks for multivariate categorical time series. Our first proposal is based on the mixture transition distribution (MTD) model. Traditionally, MTD is plagued by a nonconvex objective, non-identifiability, and presence of many local optima. To circumvent these problems, we recast inference in the MTD as a convex problem. The ne...

متن کامل

Visualizing and Modeling Categorical Time Series Data

Categorical time series data can not be eeectively visualized and modeled using methods developed for ordinal data. The arbitrary mapping of categorical data to ordinal values can have a number of undesirable consequences. New techniques for visualizing and modeling categorical time series data are described, and examples are presented using computer and communications network traces.

متن کامل

Cats & Co: Categorical Time Series Coclustering

We suggest a novel method of clustering and exploratory analysis of temporal event sequences data (also known as categorical time series) based on three-dimensional data grid models. A data set of temporal event sequences can be represented as a data set of three-dimensional points, each point is defined by three variables: a sequence identifier, a time value and an event value. Instantiating d...

متن کامل

Coping with Nonstationarity in Categorical Time Series

Categorical time series are time sequenced data in which the values at each time point are categories rather than measurements. A categorical time series is considered stationary if the marginal distribution of the data is constant over the time period for which it was gathered and the correlation between successive values is a function only of their distance from each other, and not of their p...

متن کامل

Algorithms for Segmenting Time Series

As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2020

ISSN: 1350-7265

DOI: 10.3150/20-bej1225